Laboratory of Microbial Genomics and Big Data (강원대학교 미생물유전체빅데이터 연구실)

R: Statistics - Regression with a Graph - by Eun Bae Kim (12/01/2018)
 Visits : 497,891 ( Your IP 18.227.134.115 )
 

 1: 
 2: 
 3: 
 4: 
 5: 
 6: 
 7: 
 8: 
 9: 
 10: 
 11: 
 12: 
 13: 
 14: 
 15: 
 16: 
 17: 
 18: 
 19: 
 20: 
 21: 
 22: 
 23: 
 24: 
 25: 
# Regression #################################################################
x = c(1.9, 0.8, 1.1, 0.1, -0.1, 4.4, 4.6, 1.6, 5.5, 3.4) # 독립변수
y = c(0.7, -1.0, -0.2, -1.2, -0.1, 3.4, 3.0, 0.8, 3.7, 2.0) # 종속변수
cor.test(x,y)
cor.test(x,y, alternative="greater")
cor.test(x,y, alternative="less")

out = lm(y ~ x) # 단순선형회귀
aa=summary(out) # 기본 분석결과 확인
aa
intc = aa$coefficients[1]
slop = aa$coefficients[2]


par(mfrow=c(1,2))

plot(x, y, pch=20, col="red") # plotting
abline(out, col="blue") # 회귀선 추가

plot(x, y, pch=20, col="red") # plotting
abline(out, col="blue") # 회귀선 추가
abline(a=0, b=0 , col='red', lty = 'dashed')
abline(v=0, col='red', lty = 'dashed')
abline(h=0, col='blue', lty = 'dashed')
text(0, 3, 'y=0.87378x - 0.92592',  pos=4, cex=1.5)


Figure 1. R: Statistics - Regression with a Graph


Figure 2. R: Statistics - Regression with a Graph


Kangwon National University