Laboratory of Microbial Genomics and Big Data (강원대학교 미생물유전체빅데이터 연구실)

R: Statistics - PCA and Biplot - by Eun Bae Kim (12/01/2018)
 Visits : 497,909 ( Your IP 18.188.130.151 )
 

 1: 
 2: 
 3: 
 4: 
 5: 
 6: 
 7: 
 8: 
 9: 
 10: 
 11: 
 12: 
 13: 
 14: 
 15: 
 16: 
 17: 
 18: 
 19: 
 20: 
 21: 
 22: 
 23: 
 24: 
 25: 
 26: 
 27: 
 28: 
 29: 
 30: 
 31: 
 32: 
 33: 
 34: 
 35: 
 36: 
 37: 
 38: 
 39: 
 40: 
 41: 
 42: 
 43: 
 44: 
 45: 
 46: 
 47: 
 48: 
 49: 
library(rgl)
library(devtools)
install_github("vqv/ggbiplot")
library(ggbiplot)

# PCA
pcadata <- princomp(iris[,1:4], cor=T, scores=T)
# cor = T: Use the correlation matrix or the covariance matrix
# score = T: each principal component calculated!

# summary
plot(pcadata, type='l')
summary(pcadata)

# 2d score plot
ggbiplot(pcadata,groups = iris$Species)

# loading plot
plot(pcadata$loadings[,1:2], col=c('black','blue','red','green'), pch=16)
legend('topleft',
	 c('Sepal.Length','Sepal.Width','Petal.Length','Petal.Width'),
     text.col=c('black','blue','red','green'))



install.packages("devtools")  # also need install ggplot2
library("devtools")
install_github("ggbiplot")

library("ggbiplot")
data(wine)
wine.pca <- prcomp(wine,scale.=TRUE)
g<-ggbiplot(wine.pca, obs.scale=1, var.scale=1, groups=wine.class, ellipse=TRUE, circle=TRUE)
g<-g+scale_color_discrete(name="")
print(g)




library(devtools)
install_github('fawda123/ggord')
library(ggord)
ord <- prcomp(iris[, 1:4])
p <- ggord(ord, iris$Species)
p
p + scale_colour_manual('Species', values = c('purple', 'orange', 'blue'))
p + theme_classic()
p + theme(legend.position = 'bottom')
p + scale_x_continuous(limits = c(-4, 4))


Figure 1. R: Statistics - PCA and Biplot


Figure 2. R: Statistics - PCA and Biplot


Kangwon National University